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Optically activeR-amino phosphonic acids1 have found wide-
spread use as analogues ofR-amino acids, where the tetrahedral
phosphonic acid functionality replaces the planar and less bulky
carboxylic acid.R-Amino phosphonic acids have been employed
as single units, as well as incorporated into peptides where the
phosphonamide moiety is able to mimic the tetrahedral transition
states of enzyme-mediated peptide bond hydrolysis. These structural
features cause a unique enzyme response which led to the discovery
of new antibacterial agents2 and inhibitors of protease,3,4 including
HIV-protease.

The stereoselective formation of optically activeR-amino phos-
phonic acid derivatives5 is an important task for organic chemists
due to the interesting and important biological properties of these
compounds. On the basis of the type of bond-forming reaction,
several different approaches towardR-amino phosphonic acids are
conceivable (Scheme 1, paths a-d). One direct approach involves
the nucleophilic addition of a phosphite to an imine (path a, C-P
bond formation).6 Path b (C-C bond formation) employs the
anionic phosphonic analogue of glycine, which adds to an elec-
trophilic carbon center.7 Conversely, the addition of nucleophiles8

to cationic phosphonoglycine equivalents has also been applied for
the asymmetric synthesis ofR-amino phosphonic acids (path c,
C-C bond formation). Another attractive solution is provided by
the electrophilic amination of a formallyR-phosphonate carbanion
(path d, C-N bond formation).9

Following path d in Scheme 1 for the formation of optically
activeR-amino phosphonic acids, a variety of asymmetric reactions
have been developed utilizing the chiral auxiliary principle.9

However, according to the best of our knowledge, no direct catalytic
enantioselective formation of C-N bonds has been developed for
the preparation of optically activeR-amino phosphonic acid deriv-
atives. In this communication, we present the catalytic enantiose-
lective direct amination10 of â-keto phosphonates catalyzed by chiral
zinc(II) complexes giving optically activeR-amino phosphonic acid
derivatives in good yields and very high enantioselectivities.11

Several different chiral bisoxazoline-metal(II) complexes can
catalyze the catalytic enantioselectiveR-amination of (1-methyl-
2-oxo-2-phenylethyl)phosphonic acid diethyl ester1a with diethyl
and dibenzyl azodicarboxylates2a,b (eq 1) (see Supporting
Information). Table 1 shows the results of the use of a catalyst
formed by a combination of chiral bisoxazoline ligands and
Zn(OTf)2. The chiral ligand (S)-4c gave the best results compared
with those of (R,R)-4b and (S)-4a (Table 1, entries 1-3). For
catalyst Zn(OTf)2-(S)-4c, the aminated product3a was obtained
in high yield and with up to 92% ee using2a as the aminating
reagent in various solvents at room temperature (entries 3-5). It
should be noted that increasing the reaction temperature to 40°C

led to higher conversion, and the high enantiomeric excess of the
product was still maintained (entry 6). Compound2b is also a
suitable aminating reagent (entry 7), as high yield and enantiomeric
excess of3b were obtained. Furthermore, the use of a base such as
Et3N or other additives, such as HFIP12 (entry 8), did not have any
influence on the outcome of the amination reaction.

The enantioselectiveR-amination reaction was shown to be a
general reaction for both acyclic and cyclicâ-keto phosphonates
using dibenzyl azodicarboxylate2b as the nitrogen source and
Zn(OTf)2-(S)-4c as the catalyst (eq 2), as shown in Table 2.

Acyclic â-keto phosphonates bearing alkyl, benzyl, naphthyl, or
phenyl substituents as R1 (1a-d) all reacted smoothly with dibenzyl
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Scheme 1. Different Approaches to R-Amino Phosphonic Acids
Based on the Type of Bond Formed

Table 1. Catalytic Enantioselective R-Amination of
(1-Methyl-2-oxo-2-phenylethyl)phosphonic Acid Diethyl Ester 1a
with Azodicarboxylates 2a,b under Various Conditions

entry catalyst azodicarboxylate solvent
T

(°C)
conv.a

(%)
eeb

(%)

1 4a 2a CH2Cl2 rt 20 12
2 4b 2a CH2Cl2 rt 30 -26
3 4c 2a CH2Cl2 rt 80 92
4 4c 2a Et2O rt 90 82
5 4c 2a Cl(CH2)2Cl rt 88 91
6 4c 2a CH2Cl2 40 96 89
7 4c 2b CH2Cl2 rt 90 92
8c 4c 2b CH2Cl2 rt 90 92

a Determined by1H NMR. b Enantiomeric excess determined by chiral
stationary phase HPLC.c HFIP (1 equiv added).
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azodicarboxylate2b to give the correspondingR-aminated adducts
3b-e in good isolated yields and with high enantiomeric excesses
(Table 2, entries 1-4). The reaction of theR-allyl-â-keto
phosphonate ester1e with 2b also afforded the corresponding
optically active aminated adduct3f in 85% yield and with excellent
enantioselectivity (98% ee) (entry 5). Changing the ester functional-
ity from ethyl phosphonate (1a) to methyl phosphonate (1f)
improved the yield and enantioselectivity slightly (entry 6). The
catalytic enantioselective amination of the cyclicâ-keto phospho-
nates1g,h proceeded also in high yields and in a highly enantio-
selective manner as 95 and 94% ee was obtained for the two
different ring sizes (entries 7 and 8).

To make the catalytic enantioselective Lewis acid-catalyzed
R-amination reaction ofâ-keto phosphonates more useful, further
transformations of theR-aminated product were achieved (Scheme
2). Reduction of theâ-keto functionality in3b proceeded in a high
diastereoselective manner using LiBH4 giving theN-amino oxazo-
lidinone. Further deprotection and N-N bond cleavage afforded
the oxazolidinyl-phosphonic acid derivative, (4-methyl-2-oxo-5-
phenyloxazolidin-4-yl)phosphonic acid diethyl ester5, in 60%
overall yield and with a diastereomeric ratio of>10:1. The absolute
configuration of5 was determined by X-ray analysis (see Support-
ing Information). The formation of the optically active5 represents
a new alternative procedure to the Ru-BINAP procedure developed
by Noyori et al.13

The stereochemical outcome of the reaction catalyzed by
Zn(OTf)2-(S)-4ccan be accounted for by a tetrahedral intermediate
in which it is assumed that it is the enolate form ofâ-keto
phosphonate which coordinates to the Lewis acid.14 In this
intermediate, a six-membered chairlike transition state is formed
leaving theReface of theR-carbon atom of theâ-keto phosphonate
accessible for the amination reagent, leading to the observed

stereochemical outcome of the reaction. See Supporting Information
for the proposed intermediate.

In summary, we have developed a highly enantioselective
amination reaction ofâ-keto phosphonates with commercially
available azodicarboxylates catalyzed by a combination of chiral
bisoxazoline ligands and Zn(OTf)2. After deprotection, the corre-
sponding optically activeR-amino-â-hydroxy phosphonic acid
derivatives were obtained.
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(5) Gröger, H.; Hammer, B.Chem.sEur. J. 2000, 6, 943.
(6) (a) Joly, G. D.; Jacobsen, E. N.J. Am. Chem. Soc. 2004, 126, 4102. (b)

Sasai, H.; Arai, S.; Tahara, Y.; Shibasaki, M.J. Org. Chem. 1995, 60,
6656. (c) Gro¨ger, H.; Saida, Y.; Sasai, H.; Yamaguchi, K.; Martens, J.;
Shibasaki, M.J. Am. Chem. Soc.1998, 120, 3089. (d) Schlemminger, I.;
Saida, Y.; Gro¨ger, H.; Maison, W.; Durot, N.; Sasai, H.; Shibasaki, M.;
Martens, J.J. Org. Chem.2000, 65, 4818. (e) Gro¨ger, H.; Saida, Y.; Arai,
S.; Martens, J.; Sasai, H.; Shibasaki, M.Tetrahedron Lett.1996, 37, 9291.
(f) Davis, F. A.; Prasad, K. R.J. Org. Chem. 2003, 68, 7249 and references
therein.

(7) (a) Baldwin, I. C.; Williams, M. J.; Beckett, P. P.Tetrahedron: Asymmetry
1995, 6, 679. (b) Sawamura, M.; Ito, J.Tetrahedron Lett. 1989, 30, 2247.
(c) Togni, A.; Pastor, S. D.Tetrahedron Lett. 1989, 30, 1071.

(8) Kobayashi, S.; Kiyohara, H.; Nakamura, Y.; Matsubara, R.J. Am. Chem.
Soc. 2004, 126, 6558.

(9) (a) Hanessian, S.; Bennani, Y. L.Synthesis1994, 1272. (b) Denmark, S.
E.; Chatani, N.; Pansare, S. V.Tetrahedron1992, 48, 2191. (c) Pagliarin,
R.; Papeo, G.; Sello, G.; Sisti, M.Tetrahedron1996, 52, 13783. (d) Jommi,
G.; Miglierini, G.; Pagliarin, R.; Sello, G.; Sisti, M.Tetrahedron1992,
48, 7275.

(10) Reviews: (a) Greck, C.; Droillat, B.; Thomassigny, C.Eur. J. Org. Chem.
2004, 7, 1377. (b) Erlik, E.Tetrahedron2004, 60, 8747. For chiral Lewis
acid-catalyzed reactions, see: (c) Juhl, K.; Jørgensen, K. A.J. Am. Chem.
Soc. 2002, 124, 2420. (d) Marigo, M.; Juhl, K.; Jørgensen, K. A.Angew.
Chem., Int. Ed. 2003, 42, 1367. (e) Evans, D. A.; Johnson, D. S.Org.
Lett. 1999, 1, 595.

(11) For catalytic halogenation and Mannich reactions ofâ-keto phosphonates,
see: (a) Bernardi, L.; Jørgensen, K. A.Chem. Commun2005, 1324. (b)
Hamashima, Y.; Suzuki, T.; Shimura, Y.; Shimazu, T.; Umebayashi, N.;
Tamura, T.; Sesamoto, N.; Sodeoka, M.Tetrahedron Lett.2005, 46, 1447.
(c) Kjærsgaard, A.; Jørgensen, K. A.Org. Biomol. Chem.2005, 3, 804.

(12) For example, where HFIP was used in catalytic asymmetric reactions,
see: (a) Evans, D. A.; Scheidt, K. A.; Johnston, J. N.; Wills, M. C.J.
Am. Chem. Soc.2001, 123, 4480.

(13) Kitamura, M.; Tokunaga, M.; Pham, T.; Lubell, W. D.; Noyori, R.
Tetrahedron Lett.1995, 36, 5769.

(14) For an investigation of Lewis acid-bisoxazoline intermediates, see:
Thorhauge, J.; Roberson, M.; Hazell, R. G.; Jørgensen, K. A.Chem.s
Eur. J. 2002, 8, 1888.

JA050989V

Table 2. Catalytic Enantioselective R-Amination of Acyclic and
Cyclic â-Keto Phosphonate Esters 1a-h with 2b in the Presence
of 10 mol % Zn(OTf)2-(S)-4c

â-Keto Phosphonate

entry R1 R2 R3 yielda (%) eeb (%)

1 Ph Me Et (1a) 85 - 3b 92
2 2-Np Me Et (1b) 93 - 3c 92
3 Bn Me Et (1c) 60 - 3d 95
4 Me Me Et (1d) 75 - 3e 85
5 Ph Allyl Et (1e) 85 - 3f 98c,d

6 Ph Me Me (1f) 97 - 3g 94
7 (CH2)3 Et (1g) 98 - 3h 95
8 (CH2)4 Et (1h) 98 - 3i 94

a Isolated yield.b Enantiomeric excess determined by chiral stationary
phase HPLC.c Enantiomeric excess determined after forming oxazolidinone
(see Supporting Information).d At 140 h reaction time.

Scheme 2. Formation of Oxazolidinone 5
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